What are surrounding nucleophiles and substrates

Digestion and substrate intake

Biochemistry pp 121-162 | Cite as

  • Kurt Jungermann
  • Hanns Möhler

Summary

Nutritional value and nutritional needs
  • Foods like milk, bread, potatoes, meat or eggs are complex complexes of nutrients. These represent chemical compounds that can be divided into 3 classes from a functional point of view: Energy substrates are required for energy supply; These include the carbohydrates starch, glycogen, sucrose and lactose, triglyceride fats and proteins. Energy substrates can be exchanged for one another within wide limits according to their energy content (calorific value). Construction substrates are constantly used for biosynthetic purposes due to the dynamic state of all cell components. Most of these chemically very heterogeneous compounds can be synthesized by the organism itself; on the other hand, some are essential nutritional factors and must therefore be taken in with the diet; this includes 8 essential amino acids and some polyunsaturated essential fatty acids as well as all the minerals required for construction work. Active substrates are constantly required for catalytic tasks; this is where the vitamins, most of the minerals and trace elements and the water are classified.

This is a preview of subscription content, log in to check access.

Preview

Unable to display preview. Download preview PDF.

literature

Nutritional value and need for nutrition

  1. Young, E.G .: Dietary Standards in Nutrition (G.H. Beaton, E.W. McHenry, Eds.), Vol. II, p. 299-350. New York: Academic Press 1964. Google Scholar
  2. Lang, K .: Biochemistry of Nutrition, 3rd Ed. Darmstadt: Steinkopf 1974.Google Scholar
  3. Strohmeyer, G .: Vitamin Metabolism. In: Klinische Pathophysiologie (W. Siegenthaler, ed.), Pp. 258-275. Stuttgart: Thieme. 1976. Google Scholar

Digestive secretions

  1. Hendrix, T. R., Bayless, T. M .: Digestion: Intestinal Secretion. Ann. Rev. Physiol. 32, 139-164 (1970). CrossRef Google Scholar
  2. Anderson, S .: Secretion of Gastrointestinal Hormones. Ann. Rev. Physiol. 35, 431-452 (1973). CrossRefGoogle Scholar

digestion

  1. Code, C. F .: Handbook of Physiology, Vol. 6: Alimentary canal. Washington: American Physiological Society 1968.Google Scholar
  2. Shreeve, W. W .: Physiological Chemistry of Carbohydrates in Mammals, p. 38-52. Philadelphia: Saunders 1974. Google Scholar
  3. Storelli, C., Vögeli, H., Semenza, G .: Reconstitution of a sucrase mediated sugar transport system in lipid membranes. FEBS letters 24, 287-292 (1972). PubMedCrossRefGoogle Scholar
  4. Masoro, E. J .: Physiological Chemistry of Lipids in Mammals, p. 188-194. Philadelphia: Saunders 1968. Google Scholar
  5. Ockner, R. K., Isselbacher, K. J .: Recent concepts of intestinal fat absorption. Rev. Physiol. Biochem. Pharmacol. 71, 107-146 (1974). PubMedCrossRefGoogle Scholar
  6. Perutz, M. F .: X-Ray Analysis, Structure and Function of Enzymes. Europ. J. Biochem. 8, 455-466 (1969). CrossRefGoogle Scholar

Absorption

  1. Benson, J.A., Rampone, A.J .: Gastrointestinal Absorption. Ann. Rev. Physiol. 28, 201-226 (1966). CrossRefGoogle Scholar
  2. Crane, R. K .: Well+-dependent Transport in the Intestine and other Animal Tissues. Fed. Proc. 24, 1000-1006 (1965). PubMed Google Scholar
  3. Goldner, A.N .: Sodium dependent sugar transport in the intestine. Metabolism 22, 362-383 (1973). CrossRefGoogle Scholar
  4. Sacktor, B .: Transport in Membrane Vesicles Isolated from the Mammalian Kidney and Intestine. Curr. Top. Bioenergetics 6, 39-83 (1977). Google Scholar
  5. Heinz, E .: Transport of Amino Acids by Animal Cells. In: Metabolic Pathways (L. E. Hokin, ed.), Vol. IV, p. 455-501. New York: Academic Press 1972.Google Scholar
  6. Westergaard, H., Dietschy, J. M .: The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell. J. Gin. Investig. 58, 97-108 (1976). Google Scholar
  7. Frizzell, R.A., Nellans, H.N .: Ion Transport by Mammalian Small Intestine. Ann. Rev. Physiol. 36, 51-92 (1974). CrossRef Google Scholar
  8. Cherniak, N.S., Longobardo, G.S .: Oxygen and Carbon Dioxide Gas Stores of the Body. Physiol. Rev. 50, 196-243 (1970). Google Scholar
  9. Benesch, R. E., Benesch, R .: The reaction between diphosphoglycerate and hemoglobin. Fed. Proc. 29, 1101-1104 (1970). PubMed Google Scholar

Maldigestion - malabsorption

  1. Schreiber, K .: Maldigestion and malabsorption syndromes. In: Klinische Gastroenterologie (L. Demling, Ed.), Vol. I. Georg Thieme, Stuttgart: Thieme 1973.Google Scholar
  2. Gray, G. M .: Maldigestion and Malabsorption: Clinical Manifestations and Specific Diagnosis. In: Gastrointestinal Disease (M. H. Sleisinger, J. S. Fordtran, eds.). Philadelphia: Saunders 1973. Google Scholar
  3. Rick, W., Heinkel, K., Schmidt, H., Sickinger, K .: Disorders of digestion and absorption. Darmstadt: Scientific reports, E. Merck AG 1971.Google Scholar

Acute pancreatitis

  1. Forell, M. M., Stahlhub, H .: Pancreas. In: Klinische Pathophysiologie (W. Siegenthaler, ed.), Pp. 713-724. Stuttgart: Thieme 1970. Google Scholar
  2. Giertz, H .: Bradykinin. In: General and special pharmacology and toxicology (W. Forth, D. Henschler, W. Rummel, eds.). Mannheim-Vienna-Zurich: B. I.-Wissenschaftsverlag 1975.Google Scholar

Hemoglobinopathies

  1. Comings, D. E .: Sickle cell diseases and related disorders. In: Hematology (W. J. Williams, E. Beutler, A. J. Erslev, R. W. Rundles, Eds.), P. 413-434. New York: McGraw Hill 1972.Google Scholar
  2. Comings, D. E .: Hemoglobinopathies producing cyanosis. In: Hematology (W. J. William, E. Beutler, A. J. Erslev, R. W. Rundles, Eds.), P. 434-440. New York: McGraw Hill 1972.Google Scholar
  3. Comings, D.E .: Hemoglobinopathies associated with unstable hemoglobin. In: Hematology (W. J. Williams, E. Beutler, A. J. Erslev, R. W. Rundles, Eds.), P. 440-447. New York: McGraw Hill 1972.Google Scholar
  4. Comings, D.E .: Hemoglobinopathies producing polycythemia. In: Hematology (W.J.Williams, E. Beutler, A. J. Erslev, R. W. Rundles, Eds.), P. 447-450. New York: McGraw Hill 1972.Google Scholar
  5. Love, R. R., Kaboth, W .: Sickle Cell Anemia. Med. Clin 71, 2103-2111 (1976). PubMed Google Scholar
  6. Harris, H .: The principles of human biochemical genetics, 3rd edition. Amsterdam: North Holland Publishing 1973.Google Scholar
  7. Jones, R. T., Osgood, E. E., Brimhall, B., Koler, R. D .: Hemoglobin Yakima. J. clin. Invest. 46, 1840-1854 (1967). PubMedCrossRefGoogle Scholar
  8. Pribilla, W., Klesse, P., Betke, K., Lehmann, H., Beale, D .: Hemoglobin Cologne Disease. Familial hypochromic hemolytic anemia with hemoglobin abnormality. Clin. Wschr. 43, 1049-1053 (1965). PubMedCrossRefGoogle Scholar
  9. Jones, R. T., Brimhall, B., Huisman, T. H. J., Kleihauer, E., Betke, K .: Hemoglobin Freiburg: abnormal hemoglobin due to deletion of a single amino-acid residue. Science 154, 1024-1027 (1966). PubMedCrossRefGoogle Scholar
  10. Cerami, A., Manning, J. M., Gillette, P. N., de Furia, F., Miller, D., Graziano, J. H., Peterson, Ch. M .: Effect of cyanate on red blood cell sickling. Fed. Proc. 32, 1668-1672 (1973). PubMed Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Kurt Jungermann
  • Hanns Möhler
  1. 1. Physiological-Chemical Institute of the University of GöttingenGöttingenGermany
  2. 2. Department of Experimental Medicine Hoffmann-La RocheBaselSwitzerland